Our growing society faces new and dynamic challenges such as global climate change, the scarcity of arable land and the need for sustainable energy. Maximizing the utility of plants in each of these areas is key to meeting these challenges. Overall growth rate and biomass is largely regulated by the temporal and spatial control of stem cell self-renewal and differentiation of their progeny. When a stem cell divides it produces a copy of itself, and it produces a daughter cell that can develop into different types of cells. The means and mechanisms by which this occurs are poorly understood.
The Sozzani Lab research focuses on understanding how stem cells are organized and maintained in the root of the model plant Arabidopsis thaliana. Our goal is to gain a coherent qualitative and quantitative understanding of stem cell maintenance at the systems-level. Our research leverages techniques derived from molecular, developmental and cell biology, mathematics, physics, chemistry, computer science and engineering. In plant systems, stem cell regulation has clear implications for increasing the production of crops used for food, fiber and fuel. Our research will reveal a specific molecular pathway of plant stem cells, and provide broader insights into the fundamental properties of stem cells across the plant and animal kingdoms.